Estimating the rupture extent of low frequency earthquakes near Parkfield, CA

6 April 2017

Tremor

- Many small earthquakes
- On the plate interface below the seismogenic zone
- Low-frequency: most energy in 1-10 Hz band

⇒ Constituent earthquakes have long durations?

Low frequency earthquakes have long durations. Why?

0.5 seconds in Cascadia (Bostock et al., 2015) 0.2 seconds near Parkfield (Thomas et. al., 2016)

Low frequency earthquakes have long durations. Why?

0.5 seconds in Cascadia (Bostock et al., 2015) 0.2 seconds near Parkfield (Thomas et. al., 2016) They're spatially big, with durations

 $\approx \frac{\text{earthquake radius}}{0.8 \times \text{shear wave speed}}$

 \rightarrow 1200 m diameters

Low frequency earthquakes have long durations. Why?

LFE families near Parkfield, CA

- 4000 and 8000 detections in the catalog of Shelly et al, 2009
- HRSN and PBO borehole data, 2006-2016

Do these LFEs have diameters > 1 km, as suggested by 0.2-s durations?

Want to use variation in travel time within the source region to estimate the LFEs' spatial extents

Apparent stfs are

- Similar at periods longer than the travel time across the earthquake
- Different at shorter periods

Synthetic apparent source time functions

Empirical Green's function phase removal

Expect apparent stfs (s_{tk} and s_{ik}) to vary among stations when wavelength < rupture diameter.

But we only have the observations: $d_{tk} = s_{tk} * g_k$ and $d_{ik} = s_{ik} * g_k$

Empirical Green's function phase removal

Expect apparent stfs (s_{tk} and s_{ik}) to vary among stations when wavelength < rupture diameter.

But we only have the observations: $\hat{d}_{tk} = \hat{s}_{tk}\hat{g}_k$ and $\hat{d}_{ik} = \hat{s}_{ik}\hat{g}_k$

Removing the Green's functions' phases

Have the observations: $\hat{d}_{tk} = \hat{s}_{tk}\hat{g}_k$ and $\hat{d}_{ik} = \hat{s}_{ik}\hat{g}_k$

Cross-correlate at each station

Removing the Green's functions' phases

Have the observations: $\hat{d}_{tk} = \hat{s}_{tk}\hat{g}_k$ and $\hat{d}_{ik} = \hat{s}_{ik}\hat{g}_k$

Cross-correlate at each station

 when x_k phases are the same, wavelength is larger than LFE

Template-normalized LFE energies

Template-normalized LFE energies

Averaging over 2600 LFEs: Family 37140

- Coherent fraction high out to 10 Hz \Rightarrow Diameter around 300 - 400 m

· Factor 3-4 smaller than 1.2 km expected for 3 km/s rupture velocity

Averaging over 3800 LFEs: Family 37102

- Coherent fraction high out to $> 5 \text{ Hz} \Rightarrow \text{Diameter} < 700 \text{ m}$
- · Decoherence could be due to timing, tapering, nearby LFEs
- Factor > 2 smaller than 1200 m expected for 3 km/s rupture velocity

So why are the rupture durations long?

- Long rise time from nucleation?
- Slow propagation?
- Complex rupture patterns?
- Attenuation?

Conclusions

- Low-frequency nature of tremor does not arise because the asperities are big.
- ► High inter-station coherence out to ≈10 Hz implies average diameters < 400 m and < 700 m</p>
- Rupture extents are a factor of >2-4 smaller than expected for 0.2-s durations and near-shear-wave rupture velocities
- Suggest different rupture dynamics or a role for attenuation