

GLOBAL EARTHQUAKE MODEL

working together to assess risk

# The ISC-GEM catalogue: examples of application in regional and global contexts

Marco Pagani<sup>1</sup>, Graeme Weatherill<sup>1</sup>, Julio Garcia<sup>1</sup>, F. Cotton<sup>2</sup>, P. Henshaw<sup>3</sup>, A. Smolka<sup>4</sup>

 <sup>1</sup> GEM Hazard Team - GEM Foundation, Pavia, Italy
 <sup>2</sup> GFZ Potsdam, Germany – GEM Scientific Board Chair
 <sup>3</sup> Director of Technology and Development - GEM Foundation, Pavia, Italy

<sup>4</sup> Secretary General - GEM Foundation, Pavia, Italy



June-July 2015 – 26<sup>th</sup> IUGG General Assembly, Prague, Czech Republic

### **Presentation outline**

- The ISC-GEM catalogue: short introduction
- Current examples of application of the ISC-GEM catalogue
- Some recent developments

## GEM hazard global components

### The GEM Hazard Global Components:

- Global Historical seismicity catalogue and archive (GHEC and GHEA)
- Global strain rate model (GSRM)
- Global active fault database (GFE)
- Global Ground Motion Prediction Equations (GGMPEs)
- Global Instrumental seismicity catalogue (ISC-GEM)













Istituto Nazionale di Geofisica e Vulcanologia





Version 1.0 – released in January 2013 (1900-2009)

- 110 years of ~20000 earthquake hypocenters and uncertainties, recomputed using the original arrival-time data and the same technique and velocity model throughout;
- where possible, earthquake magnitudes are expressed in Mw scale based on seismic moment;
- proxy Mw is estimated in all other cases based on the newly developed empirical relationship with MS and mb;
- uncertainty and quality flag for both earthquake hypocenters and magnitudes are estimated using uniform techniques.

# **ISC-GEM** in a nutshell



1919









Version 2.0 – released in January 2015 (1900-2011)

- Added 504 earthquakes from 2010 and 672 from 2011
- For the 1950s, processed and relocated 4156
  earthquakes and obtained 2216 new MS and 12
  mb values
- 200 new magnitudes of earthquakes previously in the supplementary catalogue and reviewed hypocentre locations of about 500 events.

# **Examples of ISC-GEM application**



GEM

# Michael (2014)

Michael analysed the ISC-GEM temporal completeness :

- Earthquakes shallower than 60 km within 7 time periods
- Deep events within 2 periods

Four methodologies for completeness analysis adopted. All rely on the basic concept that for magnitudes larger than the magnitude completeness threshold observations must fit a Gutenberg-Richter relationship.



# Michael (2014)

|      | i    |     | 1              |
|------|------|-----|----------------|
| From | То   | Мс  | Shallow events |
| 1900 | 1917 | 7.7 | (depth < 60km) |
| 1918 | 1939 | 7.0 |                |
| 1940 | 1954 | 6.8 |                |
| 1955 | 1963 | 6.5 |                |
| 1964 | 1975 | 6.0 |                |
| 1976 | 2003 | 5.8 |                |
| 2004 | 2009 | 5.7 |                |

Deep events (depth < 60km)

| From | То   | Mc  |
|------|------|-----|
| 1900 | 1963 | 7.1 |
| 1964 | 2009 | 5.7 |

GLOBAL QUAKE MODEL



### **Bird and Kreemer (2015)**



0.7

0

-0.7

-1

1.4

2.1

2.8

3.5

4.2 4.32 = log<sub>10</sub>(nanostrains/year)

10° 20° 30° 40° 50° 60° 70° 80° 90° 100°110°120°130°140°150°160°170°180 70° 60° 50° 40° 30° 20° 10° 80° 90°

GEM

## Bird and Kreemer (2015)



**Figure 7.** Global cumulative frequency–magnitude distribution of preferred model SHIFT-GSRM2f compared with the distributions of two global seismic catalogs: the International Seismological Centre-Global Earthquake Model (ISC-GEM) catalog of Storchak *et al.* (2012) for years 1918–1976 (including its supplement) and the Global Centroid Moment Tensor (CMT) catalog of Ekström *et al.* (2012) for years 1977–2012. The increased Global CMT rate in 2004–2012 is also shown with a dashed curve. All curves are normalized to 100 years of observation and are restricted to shallow earthquakes, with hypocentroids no deeper than 70 km.

#### GEM

### Bird and Kreemer (2015)



**Figure 8.** The stair-stepped graph line shows the global cumulative seismic moment release from shallow ( $\leq 70$  km below sea level) hypocentroids in the ISC-GEM catalog of Storchak *et al.* (2012) from 1 January 1918 until 31 December 1976 and the Global CMT catalog of Ekström *et al.* (2012) from 1 January 1977 until 31 December 2013. The largest step, in 1960, represents the seismic moment of the *m* 9.64 Valdivia subduction earthquake offshore Chile. We increased the moment of the 2004 Sumatra earthquake to  $1.0 \times 10^{23}$  N·m (*m* 9.3) to be consistent with the latest findings (Stein and Okal, 2005, 2007; Tsai *et al.*, 2005). The straight diagonal line is the constant shallow-earthquake seismic moment rate implied by our preferred model SHIFT-GSRM2f.

### Mikhailova et al. (2015)



Figure 1. The map of earthquakes epicenters by the Central Asia catalogue EMCA until 1991. (a) with magnitude  $\leq 6.0$ ; (b) with magnitude  $\geq 6.1$ .

Mikhailova et al. (2014) created a regional catalogue for Central Asia by combining International (e.g. ISC bulletin) and regional catalogues (e.g. Kyrgyzstan and Kazakhstan)

### Mikhailova et al. (2015)



GLOBAL QUAKE MODEL

GEM

# Lubkowski et al. (2014)

Lubkoswski et al. (2014) created a regional catalogue for the East African Rift by merging the ISC-GEM with other catalogues



# ISC-GEM and GEM's Regional activities

GEM is developing a suite of tools for:

- Merging different catalogues (e.g. duplicate finding tool)
- Exploring the catalogue database
- Perform regressions
  between different
  magnitude types
- Catalogue homogenisation



Fig. 8: Common events within the DHMR bulletin and the ISC  $(M_S)$  (top), ISC  $(m_b)$  (bottom)

GLOBAL QUAKE MODEL

CIEN

# **ISC-GEM and GEM's Regional activities**

- Supported magnitude regression models:
- N-th order polynomial
- Exponential
- N-segment piecewise linear (free cross-over)
- Two-segment
  piecewise linear
  (fixed cross-over)



# **ISC-GEM and GEM's Regional activities**

The construction of a homogenised catalogue uses magnitude and location selection criteria (possibly areadependent)



GLOBAL QUAKE MODEL .ORG

GEN

### Conclusions

- Briefly illustrated the ISC-GEM catalogue and described some application examples
- Despite its short life, the ISC-GEM is largely used within the seismological community and finds application in many research areas
- In the regional hazard modelling domain it constitutes a reference resource in the high magnitude range.
- Integration of the information in the catalogue with other DBs will further improve its usability



GLOBAL QUAKE MODEL .ORG

GEM



Please attribute to the GEM Foundation with a link to -<u>www.globalearthquakemodel.org</u>



Except where otherwise noted, this work is licensed under: creativecommons.org/licenses/by-nc-nd/4.0/

